에너지전환을 위한 예비력 제도의 개선 방향

정해성 econohs@masterspace.co.kr

목차

- 1. 재생에너지와 예비력
- 2. 예비력 제도 현황
- 3. 예비력 문제점
- 4. 개선 방향

1.1 재생에너지 증가로 인한 어려움

- 재생에너지의 증가는 계통과 시장 운영에 많은 어려움을 유발
- 특히 예비력이 중요한 역할을 하게 됨
- 불확실성 증가
- 변동성 증가
- Over generation
- 전압 문제 증가
- 관성 문제 발생
- 혼잡

예비력 증가 요인

예비력과 연관

보조서비스의 영역

에너지 + 송전망

1.2 Over generation

- 운전 예비력을 확보하기 위해서 발전기 기동은 필수
- 운전 예비력 5,000MW 를 확보하기 위해서는 발전기 20,000MW의 기동과 15,000MW의 발전 필요

500MW 발전기 40대 기동 최대출력 20,000MW

발전 15,000MW

최소출력 10,000MW

Up: 5,000MW

Down: 5,000MW

- 예비력을 제공 못하는 원자력/신재생/열제약 등이 집중되는 시간에 예비력 확보를 위해 발전기를 많이 기동하면 최소출력으로 over generation이 증가
- 간단 계산
 - ✓ 동계 운전 예비력 5,000MW 확보 시
 - 원자력 (23,000MW) + 열제약 (10,000MW) + 15,000 MW + Renewable 보다 수요가 작으면 Over generation 발전
 - ✓ 동계 운전 예비력 10,000MW 확보 시
 - 원자력 (23,000MW) + 열제약 (10,000MW) + 30,000 MW + Renewable 보다 수요가 작으면 Over generation 발전

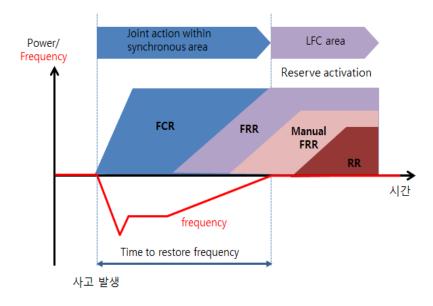
1.3 속응성 자원의 필요성

- 속응성 자원은 Over generation으로 인한 재생에너지 curtail을 줄일 수 있음
- 우리 시장에서는 1차, 2차, 주파수제어예비력은 운전 중인 발전기가 제공
- 3차 예비력, 속응성 예비력은 운전 또는 정지중인 발전기가 제공가능하며 3차는 30분 이내 확보, 속응성 자원은 20분 이내 확보로 규정
- 30분 내에 기동가능한 발전기는 양수, 수력, 그리고 hot 상태의 일부 GT 정도
 - ✓ 3차나 속응성은 양수 또는 운전 중인 발전기가 제공해야 하는 상황 → 발전기가 많이 기동할수록 Over generation 문제가 발생하게 됨
- 우리 시장은 빠르게 기동하는 발전기에게 인센티브를 주지 않았음
 - ✓ 수급계획에서도 발전기의 효율 문제로 복합만을 허가하며 GT 발전기는 불가
 - ✓ 재생에너지를 고려하면 빠르게 기동하는 GT, 양수와 같은 발전기가 필요

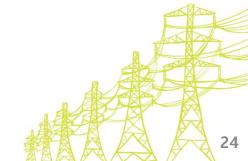
2.1 보조서비스의 개념

- 보조서비스라는 표현은 1996년 4월 미국의 FERC의 Order 888에서 유래
 - ✓ 예비력 외에 무효전력, 전압 등을 포함하는 보다 폭 넓은 개념
- 전력시장 초기에 전압과 같은 보조서비스도 시장에 편입하려다 지역적 특성으로 인해 예비력만 시장
 - ✓ 그러나 예비력 시장을 보조서비스 시장이라고 부르기도 함

After considering the comments, we conclude that the following six ancillary services must be included in an open access transmission tariff:


- (1) Scheduling, System Control and Dispatch Service;
- (2) Reactive Supply and Voltage Control from Generation Sources Service;
- (3) Regulation and Frequency Response Service;
- (4) Energy Imbalance Service;
- (5) Operating Reserve Spinning Reserve Service; and
- (6) Operating Reserve Supplemental Reserve Service.

- ✓ (1), (4) 주(state) 또는 전력회사 간에 전력을 거래(wheeling)하는 미국 상황을 고려한 개념 현재 대부분 전력시장에서는 보조서비스로 포함시키지 않음
- ✓ (2) 무효전력
- ✓ (3), (5), (6)이 예비력의 개념


2. 예비력 제도 현황

2.2 예비력의 종류

- ENTSO E (유럽 송전망 운영자)
 - ✓ Frequency Containment Reserve(FCR), Frequency Restoration Reserve(FRR), Replacement Reserve(RR)
 - ✓ 실제 국가별로는 보다 상세한 예비력을 규정하여 적용하고 있음

- PJM
 - ✓ 주파수조정, spinning, non-spinning

2.3 우리 시장의 예비력

- 예비력은 공급예비력과 운영예비력으로 구분
 - ✓ 공급예비력은 수요를 초과하는 공급능력
 - ✓ 운영예비력 = 주파수제어예비력 + 1차 + 2차 + 3차
 - 주파수제어: 평상시
 - 1차/2차/3차: 고장 시
- 속응성: 운영예비력과는 별도로 중앙급전발전기 중 20분 이내 응동, 4시간 이상 출력 유지
 - ✓ "별도로 확보할 수 있다"라고 되어 있음
- 제주지역의 예비력은 추가로 확보

[예비력 종류]

	용량 (MW)	기준
주파수제어	700 이상	5분 이내 응동, 30분 이상 유지
1차	1,000 이상	10초 이내 응동, 5분 이상 유지
2차	1,400 이상	10분 이내 등동, 30분 이상 유지
3차	1,400 이상	30분 이내 확보
속응성	2,000 이상	20분 이내 확보, 4시간 이상 유지

2.3 우리 시장의 예비력

- 예비력은 공급예비력과 운영예비력으로 구분
 - ✓ 공급예비력은 수요를 초과하는 공급능력
 - ✓ 운영예비력 = 주파수제어예비력 + 1차 + 2차 + 3차
 - 주파수제어: 평상시
 - 1차/2차/3차: 고장 시
- 속응성: 운영예비력과는 별도로 중앙급전발전기 중 20분 이내 응동, 4시간 이상 출력 유지
 - ✓ "별도로 확보할 수 있다"라고 되어 있음
- 제주지역의 예비력은 추가로 확보

[예비력 종류]

	용량 (MW)	기준
주파수제어	700 이상	5분 이내 응동, 30분 이상 유지
1차	1,000 이상	10초 이내 응동, 5분 이상 유지
2차	1,400 이상	10분 이내 등동, 30분 이상 유지
3차	1,400 이상	30분 이내 확보
속응성	2,000 이상	20분 이내 확보, 4시간 이상 유지

3.1 보조서비스와 예비력

• 시장운영규칙 상의 보조서비스

제1절 통칙

제1.1.2조(용어의 정의) 이 규칙에서 사용하는 용어의 정의는 다음과 같다.

30. "계통운영보조서비스(이하 "보조서비스")"라 함은 전력계통의 신뢰성, 안정성을 유지하고, 전기품질을 유지하며, 전력거래를 원활하게 하기 위하여 전기사업자가 제공하는 주파수조정, 예비력, 무효전력및 자체기동 등의 서비스를 말한다.<개정 2006.9.14.>

- ✓ 주파수조정은 예비력의 범주인가? 보조서비스 범주인가?
 - 과거에는 현행 1차 + 주파수제어예비력을 합하여 주파수조정예비력이라 정의했음
 - 그러나 시장운영규칙에는 여전히 주파수조정이라는 표현이 다수 사용되고 있음

중요한 이슈는 아니지만 분류 체계와 용어를 보다 면밀하 검토할 필요가 있음

3.2 분류체계와 산정 기준

• 1) 유럽식의 1차(FCR)/2차(FRR)/3차(RR) 체계와 PJM의 AGC(주파수제어)의 개념이 복합되어 있음

	용량 (MW)	기준
주파수제어	700 이상	5분 이내 응동, 30분 이상 유지
1차	1,000 이상	10초 이내 응동, 5분 이상 유지
2차	1,400 이상	10분 이내 등동, 30분 이상 유지
3차	1,400 이상	30분 이내 확보
속응성	2,000 이상	20분 이내 확보, 4시간 이상 유지

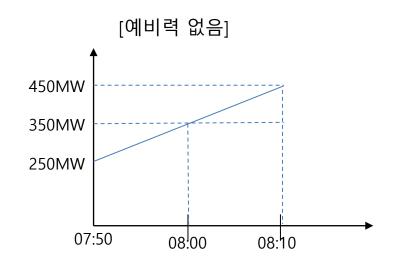
- 2) 주파수제어와 2차를 합하면 무슨 문제가 발생하는가? 굳이 분리한 이유는 무엇인가?
- 3) 속응성 자원은 용도는?
 - ✓ 속응성 자원과 3차 예비력을 구분한 이유는 무엇인가?
 - ✓ 속응성 자원보다 운전예비력 확보가 우선이라고 규정하였는데 속응성 자원은 3차보다 응동 기준이 짧음 → 30분 자원을 확보하다 굳이 20분 자원이 필요한 이유는?

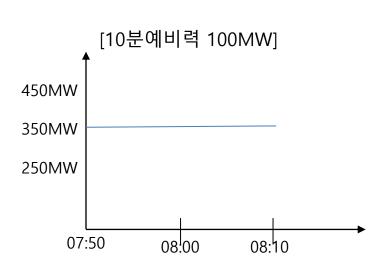
3.2 분류체계와 산정 기준

- 4) 예비력 용량의 기준은 어떻게 산정한 것인가?
 - ✓ 예비력 필요량은 무슨 기준으로 산정했는가?
- 5) 하루전과 실시간이 동일한 기준이어야 하는가?
 - ✓ 위의 예비력 기준은 하루전 계획과 실시간의 구분이 없음
 - 하루전은 1시간의 평균 수요, (향후)실시간은 15분을 이용하므로 동일한 수요에서도 오차가 발생

	13:00	13:15	13:30	13:45
15분	64,000	65,000	66,000	67,000
30분	64,500		66,500	
60분	65,500			

- 하루전과 실시간의 예비력 요구량은 달라야 정상 → 왜 우리는 하나의 값만 있는가?
- ✓ 실제로는 계획단계에서 10GW, 실시간 7GW의 운영예비력을 적용하는 것으로 보임 → Why?
 - 왜 기준과 실제의 확보량이 다른가?
- 6) 사고 시에도 예비력 양이 만족되어야 한다는 개념
 - ✓ 일반적으로 예비력은 사고를 대비하여 있으며 사고 시에는 예비력이 소진되어 일시적으로 예비력이 부족해지는 것이 정상
 - ✓ 그러나 우리 시장은 사고 시에도 위의 예비력이 확보되어야 하도록 운전


3.2 분류체계와 산정 기준


- 7) 예비력은 방향성이 있으나 시장규칙에는 현재 up/down의 구별이 없음
 - ✓ Up/down: 주파수제어, 1차, 2차
 - ✓ Up : 3차, 속응성
 - ✓ 최소출력이 200MW인 발전기가 200MW를 발전하면 AGC를 할 수 있는가?
 - AGC-up은 가능하지만 AGC-down은 불가능
 - Up/down을 구별한다면 예비력 종류도 up/down이 구별되어야 함
 - ✓ 시장규칙에는 up/down의 구별이 없으나 EMS에서는 AGC의 up/down을 구별함

3.3 EMS의 예비력 산정 기준 문제

- EMS는 현재 출력과 발전기 용량을 고려하여 예비력을 산정하여 ramp-rate 상황이 반영되지 않음
 - ✓ 오전시간 수요가 증가하며 발전기들이 ramp-rate를 따라 출력을 증발하는 상황에도 예비력이 산 정됨
 - ✓ Ramp-rate = 10MW/min, 최대출력 500MW인 발전기를 가정

EMS에서는 두 발전기 모두 10분 예비력이 100MW로 산정됨

3.4 양수 발전기의 예비력

- 양수 발전기는 3차 또는 속응성으로 활용되는 주요한 자원이나 일반 발전기와 달리 상부저수지에 저 장된 물이 없으면 발전이 불가능
- 만일 상부 저수지에 100MWh를 발전할 수 있는 물의 양이 있으면 24시간 발전계획을 세울 때 얼마만 큼의 예비력을 할당할 수 있는가?
 - ✓ 양수 발전기에 예비력을 할당해도 실제 출력을 올려 에너지로 변환되지 않으면 저수지에 물은 여전히 남게 됨
 - ✓ 즉 양수 발전기와 같이 발전량에 제약이 있는 자원의 예비력 활용은 확률의 문제임
- 경제성을 고려하면 양수발전기는 펌핑 효율이 좋은 자원이 우선적으로 활용되지만 우리시장은 전체 양수를 균등하게 사용하는 경향이 있음
 - ✓ 양수 A에 1000MWh, B에 0MWh가 있는 것보다는 각각 500MWh가 있는 것이 예비력 측면에서 유리
 - ✓ 현행 운전 방식은 안정적인 운영의 관점에서는 적절함
 - ✓ 단, 관련 기준이 시장규칙에 명확하지 않고 운전원의 know-how에 의존하는 경향
- 우리시장규칙에는 양수 발전기의 예비력 산정과 운영에 대한 명확한 규정이 없음
 - ✓ 미국과 같은 입찰시장에서는 발전사업자의 입찰로 해결하므로 양수 예비력이 문제가 되지 않음

3.5 근본적인 시장/설비구조의 문제

- 30분 내에 기동가능한 발전기는 양수, 수력, 그리고 hot 상태의 일부 GT 정도
 - ✓ PJM의 gas turbine: 9.7GW
 - ✓ California의 gas turbine: 7.1GW
- 양수, 수력 외에는 3차 또는 속응성으로 활용할 자원이 부족한 상황은 예비력 운영을 어렵게 하는 측면이 있음
- 시장과 제도가 빠르게 기동하는 자원에 대해 보상을 하지 못함
 - ✓ 거래소의 요청에 의해 gas turbine을 단독기동해도 연료비도 충분히 보상받지 못하는 상황
 - 사업자들의 기피 현상
 - ✓ 하루 전 시장만이 있어 실시간 gas turbine 기동은 시장가격과도 연동되지 못함
 - DR이나 향후 진입할 vpp 자원의 효율적 운영이 어려움
 - ✓ 최근 복합발전기는 일축형으로 gas turbine 단독기동도 불가함
 - ✓ 수급계획에서도 GT는 불가
 - ✓ 양수의 경우에도 CP가 일반 발전기의 ¼ 수준

제대로 된 보상이 없는 시장 구조 > 양수 위주의 운영

- 첫째, 예비력 시장의 도입 필요
 - ✓ 예비력에 대한 명확한 보상이 없으면 정확한 운영도 어려움
 - ✓ 시장의 도입으로 예비력 확보와 보상 부분은 많은 부분이 투명화 될 것으로 보임
 - ✓ 그러나 예비력 양의 산정, 운영 방식 등은 여전히 검토가 필요해 보임
- 둘째, VPP, 재생에너지, DR 등 다양한 자원을 통한 예비력 확충 필요

[재생에너지 예비력 제공 없음] 5000MW의 운전예비력을 위해 15,000MW 발전

→ 재생에너지 15,000MW curtail

[재생에너지 예비력 제공 가능]

5000MW의 운전예비력을 위해 재생에너지 가 5,000MW를 평상시 감발 → 5,000MW에 대해 예비력 보상

- 재생에너지 curtail 감소
- 재생에너지 수익 증가
- 시장가격은 curtail 시 0이하의 가격에서 0이상으로 상증

- 셋째, 예비력 운영의 고도화 필요
 - ✓ 독일: 재생에너지가 3배 증가하는 동안 예비력 확보량은 오히려 15% 감소
 - ✓ 감소 요인 (추정)
 - 재생 에너지 예측의 개선
 - 수요예측 개선
 - 발전기 고장정지 감소
 - TSO의 비용에 대한 인식
 → 예비력 마진 감소
 - TSO간 협조
 - PX의 15분 단위 거래

예측 정확도 향상

운영 능력 향상

^{*}Balancing power and variable renewables: Three links, Renewable and Sustainable Energy Reviews 50 (2015)

- 넷째, 계통운영에 인센티브 도입
 - ✓ 현재 공기업 평가기준으로는 효율적인 시장과 계통운영 불가 → 인센티브 없음
 - ✓ 전문적인 평가기준 도입으로 전문성을 높이도록 유인해야 함

[영국]

- OFGEM은 송전망사업자이며 계통 운영자인 (구)NGET에게 인센티브 제도를 시행하고 있음
- 최근에는 계통운영자, 송전사업자 등에게 RIIO-2 라는 규제를 수행 (2021 ~ 2028)
- 계통운영자에 대한 내용 중 일부 발췌

[계통운영자 평가지표]

역할	평가항목
role 1 control center operation	발런싱 비용 수요예측 풍력예측 예방정비 관리
role 2 시장 개선과 운영	옥션 그리고 입찰 등의 구입비용 최소화

계통운영에 대한 지원은 확실히!!

- 인원보강/전문성 보강
- 필요한 자원을 충분히 확보할 수 있도록 시장제도와 연계
 - 예비력이 부족하면 부족한 근거를 명확히 제시하고 시장에서 충분히 구입할 수 있도록 제도 개선
- 필요한 IT 시스템 확충

검증은 철저히!!

- 계통운영/시장운영의 효율성에 대한 지속적인 감시
- 정보의 투명성

감사합니다.