기획토론-미세먼지 특단조치 1

본철미세먼지시즌 석탄발전 중단하면 어떤 부담이 있을까

일시. 2019년 4월 15일(월) 오전 10시~12시

장소. 패스트파이브 시청점 5층 컨퍼런스룸

주최. 에너지전환포럼

주관. 생/너지전환포건

〈기획토론-미세먼지 특단조치 2〉 봄철 미세먼지 시즌 석탄발전 중단하면 어떤 부담이 있을까?

일시 : 2019년 4월 15일(월) 오전 10시~12시 장소 : 패스트파이브 시청점 5층 컨퍼런스룸

[프로그램]

좌장 : **이성호** 박사(에너지전환포럼 정책대응분과장)

등록 및 안내					
9:30~10:00	등록 및 안내				
인 사 말					
10:00~10:05	10:00~10:05 홍종호 상임대표				
주 제 발 표					
10:05~10:25	미세먼지 실질적 감축을 위한 석탄발전 상한제약 방안	한국환경정책평가연구원 이창훈 선임연구위원			
10:25~10:45	석탄발전 감축에 따른 전기요금 영향	에너지경제연구원 박광수 선임연구위원			
종 합 토 론					
10:45-11:30	종합 토론				

목 차

석탄발전 상한제약 방안1
이 창 훈 (한국환경정책평가연구원 선임연구위원)
석탄발전 감축에 따른 전기요금 영향 31
박 광 수 (에너지경제연구원 선임연구위원)

■ 미세먼지 실질적 감축을 위한

미세먼지 실질적 감축을 위한 석탄발전 상한제약 방안

이 창 훈

한국환경정책평가연구원 선임연구위원

발전부문 미세먼지 저감 대책 - 비상저감조치 강화 방향

이창훈

2019.04.15

에너지전환포럼

한국환경정책·평가연구원 Korea Environment Institute

목 차


- 1. 환경급전의 개념 및 유형
- 2. 미세먼지 현황
- 3. 발전 및 배출 현황
- 4. 비상저감조치 효과 분석
- 5. 비상저감조치 강화 방향

1. 환경급전의 개념 및 유형

- 2. 미세먼지 현황
- 3. 발전 및 배출 현황
- 4. 비상저감조치 효과 분석
- 5. 비상저감조치 강화 방향

환경급전 개념

- ❖ 급전 dispatch 전력수요를 충족시키는 발전소별 (유효)발전량의 결정
- ❖ 경제급전 economic dispatch 전력수요를 <mark>최소 비용</mark>으로 충족시키도록 발전소별 발전량 결정
- ❖ (협의) 환경급전 : environmental dispatch 오염물질 배출 또는 환경비용을 최소화하는 발전소별 발전량 결정
- ❖ (광의) 환경급전/ 환경경제급전 economic/environmental dispatch 변동비 감축과 오염물질 감축을 동시 고려
 - 통합 최소화(Integrated Min.) 변동비(사적비용)와 환경비용의 합(사회적 비용)을 최소화
 - 조건부 최소화(Constrained Min.)
 - * 오염물질 배출량 제약, 사적 변동비 최소화
 - * 변동비 또는 전기요금 제약, 오염물질 최소화

환경급전 필요성

- 1. 고농도 미세먼지 대책
 - 미세먼지 고농도 시 비상저감조치의 일환
 - 시간 및 장소 중요
- 2. 대기오염 저감 정책
 - 미세먼지 포함 평시 대기오염 저감을 위한 발전부문 정책수단
 - 시간 및 장소 다소 중요
- 3. 온실가스 저감 정책
 - 온실가스 저감을 위한 발전부문 정책수단
 - 시간 및 장소 중요하지 않음

5

환경급전 시행방식

- 1. 자율규제(현행): '상한제약입찰'
 - 미세먼지 등을 이유로 지자체장의 요청이 있는 경우 발전사업자들의 전기공급의무를 면제 (기본은 전기공급의 '의무'를 지님)
 - ※ 상한제약: "9. "상한제약"이라 함은 열공급, 연료의무사용, 시운전, 대기오염물질 저감 등의 제약사유에 의해 발전기 운전범위의 상한치를 설정해 놓은 것을 말한다."
- 2. 직접규제 :
 - 전력거래소가 환경부처 또는 지자체장의 요청을 받아 미세먼지 다배출 발전소를 급전계획에서 제외 또는 발전량 감축
- 3. 간접규제:
 - 환경비용 또는 환경제약을 목적함수 또는 제약조건에 내재화

참고: 관련 법률 - 전기사업법

❖ 전기사업법

제3조(정부 등의 책무) ① 산업통상자원부장관은 이 법의 목적을 달성하기 위하여 전력수급(電力需給)의 안정과 전력산업의 경쟁촉진 등에 관한 기본적이고 종합적인 시책을 마련하여야 한다. <개정 2013.3.23.>

② 산업통상자원부장관은 제1항에 따른 시책 및 제25조에 따른 전력수급기본계획을 수립할 때 전기설비의 경제성, 환경 및 국민안전에 미치는 영향 등을 종합적으로 고려하여야 한다. <신설 2017.3.21.>

③ 제35조에 따라 설립된 한국전력거래소는 전력시장 및 전력계통의 운영과 관련하여 <mark>경제성, 환경 및 국민안전에 미치는</mark> 영향 등을 종합적으로 검토하여야 한다. <신설 2017.3.21.>

제5조(환경보호) 전기사업자는 전기설비를 설치하여 전기사업을 할 때에는 자연환경 및 생활환경을 적정하게 관리 • 보존하는 데 필요한 조치를 마련하여야 한다. [전문개정 2009.5.21.]

제14조(전기공급의 의무) 발전사업자 및 전기판매사업자는 대통령령으로 정하는 <mark>정당한 사유 없이 전기의 공급을 거부하여서는 아니된다. <개정 2016.1.27.></mark>

제45조(전력계통의 운영방법) ① 한국전력거래소는 전기사업자 및 수요관리사업자에게 전력계통의 운영을 위하여 필요한 지시를 할 수 있다. 이 경우 발전사업자 및 수요관리사업자에 대한 지시는 전력시장에서 결정된 우선순위에 따라 하여야 한다. <개정 2014.5.20.>

② 한국전력거래소는 제1항 후단에도 불구하고 전력계통의 운영을 위하여 필요하다고 인정하면 우선순위와 다르게 지시를 할 수 있다. 이 경우 변경된 지시는 객관적으로 공정한 기준에 따라 결정되어야 한다. <개정 2014.5.20.>

7

참고: 관련 법률 – 전기사업법 시행령

❖ 전기사업법 시행령

제5조의2(전기공급의 거부 사유) 법 제14조에서 "대통령령으로 정하는 정당한 사유"란 다음 각 호의 어느 하나에 해당하는 경우를 말한다. <개정 2017.12.26.>

2의2. 발전사업자[법 제35조에 따라 설립된 한국전력거래소(이하 "한국전력거래소"라 한다)가 법 제45조에 따라 전력 계통의 운영을 위하여 전기공급을 지시한 발전사업자는 제외한다]가 법 제5조에 따라 환경을 적정하게 관리 • 보존하 는 데 필요한 조치로서 전기공급을 정지하는 경우

7. 법 제66조제6항 또는 <mark>다른 법률에 따라</mark> 시장・군수・구청장(자치구의 구청장을 말한다. 이하 같다) 또는 그 밖의 행 정기관의 장이 전기공급의 정지를 요청하는 경우

* 법 제66조제6항은 안전문제로 인해 재해가능성이 있는 경우를 규정하고 있음

참고: 관련 법률 - 전력시장운영규칙

❖ 전력시장 운영규칙 (17.5.30시행)

제2.3.2조의2(대기오염물질 저감을 위한 상한제약 입찰) ① 중앙급전발전기를 보유한 발전사업자는 다음 각 호의 경우 제 1.1.2조 제9호에 따라 대기오염물질 저감을 이유로 상한제약 입찰을 할 수 있다.

- 1. 상업운전 개시(또는 발전기 준공) 후 30년이 경과된 노후석탄화력발전기. 다만, 기간은 3월에서 6월까지로 한다.
- 2. 전기사업법 시행령 제5조의2 제7호에 따라 발전사업자가 해당 행정기관의 장 등으로부터 전기공급의 정지를 요청받은 경우
- 3. 전기사업법 또는 다른 법률에 따라 상한제약 입찰이 허용된 경우

제1.1.2조(용어의 정의)

9. "상한제약"이라 함은 열공급, 연료의무사용, 시운전, 대기오염물질 저감 등의 제약사유에 의해 발전기 운전범위의 상한치를 설정해 놓은 것을 말한다. [신설 2006.12.26.] <개정 2017.5.30.>

9

참고: 관련 법률 - 전력시장운영규칙

❖ 전력시장 운영규칙 (17.5.30시행)

제5.2.1조(실시간 급전계획 수립) <본조 제목변경 및 개정 2014.10.2.> ① 전력거래소는 계통운영시스템을 통해 실시 간 급전계획을 수립해야 하며, 이를 위해 계통운영시스템의 다음 기능을 사용하여 발전기 및 전기저장장치의 유효전 력을 지시할 수 있다. [신설 2014.10.2.] <개정 2016.5.12.>

- 1. 경제급전(Economic Dispatch)
- 2. 안전도제약경제급전(Security Constrained Economic Dispatch)
- ② 경제급전은 <mark>발전기 비용</mark>과 예비력 제약을 포함한 발전기 제약과 송전손실 계수를 고려하여 발전기 유효출력을 결정하는 기능을 말한다. [신설 2014.10.2.]
- ③ 안전도제약경제급전 기능은 경제급전 기능에서 고려할 수 있는 제약과 과도한 과부하를 초과하는 상정고장 제약을 포함한 송전선로 제약 등을 고려하여 발전기 유효출력을 결정하는 기능을 말한다.

제5.2.2조(실시간급전계획 수립방법)

3. 향후 10분 후의 예측 수요를 기반으로 다음 각목을 고려하여 총 <mark>계통비용이 최소화 되도록</mark> 하는 것을 원칙으로 5분 단위의 <mark>안전도제약경제급전계획</mark>을 수립한다. [신설 2014.10.2.]

[별표 9] 운영발전계획 수립 절차

3.2 운영발전계획 담당자는 제약조건을 고려하되 전력계통 신뢰성을 바탕으로 <mark>전력공급비용을 최소화할 수 있는</mark> 공정 및 투명한 운영발전계획이 수립될 수 있도록 노력하여야 한다. <개정 2011.12.2., 2014.11.3.>

참고: 관련 법률 – 미세먼지특별법

❖ 미세먼지 저감 및 관리에 관한 특별법

제18조(고농도 미세먼지 비상저감조치) ① 시.도지사는 환경부장관이 정하는 기간 동안 초미세먼지 예측 농도가 환경 부령으로 정하는 기준에 해당하는 경우 미세먼지를 줄이기 위한 다음 각 호의 비상저감조치를 시행할 수 있다. 다만, 환경부장관은 2개 이상의 시·도에 광역적으로 비상저감조치가 필요한 경우에는 해당 시·도지사에게 비상저감조치 시행을 요청할 수 있고, 요청받은 시·도지사는 정당한 사유가 없으면 이에 따라야 한다.

- 1. 대통령령으로 정하는 영업용 등 자동차를 제외한 자동차의 운행 제한
- 2. 「대기환경보전법」제2조제11호에 따른 대기오염물질배출시설 중 환경부령으로 정하는 시설의 가동시간 변경, 가동률 조정 또는 대기오염방지시설의 효율 개선
- 3. 비산먼지 발생사업 중 건설공사장의 공사시간 변경·조정
- 4. 그 밖에 비상저감조치와 관련하여 대통령령으로 정하는 사항

제21조(배출시설 등에 대한 가동조정 등) ① 환경부장관은 계절적, 비상시적 요인 등으로 미세먼지등의 배출 저감 및 관리를 효율적으로 수행하기 위하여 필요하다고 인정하는 경우에는 대통령령으로 정하는 바에 따라 관계 중앙행정기 관의 장, 지방자치단체의 장 또는 시설운영자에게 대기오염물질 배출시설의 가동률 조정 등을 요청할 수 있다.

- ② 제1항에 따른 요청을 받은 중앙행정기관의 장, 지방자치단체의 장 또는 시설운영자는 정당한 사유가 없으면 환경부 장관의 요청에 따라야 한다.
- ③ 그 밖에 가동률 조정 요청의 방법 및 절차 등에 필요한 사항은 환경부령으로 정한다.

11

참고: 관련 법률 – 특별법 시행령/시행규칙

❖ 미세먼지 저감 및 관리에 관한 특별법 시행령 입법예고안

제14조(배출시설 등에 대한 가동조정 등) ① 환경부장관은 법 제21조제1항에 따라 다음 각 호의 조치를 관계 중앙행정기관의 장, 지방자치단체의 장 또는 시설운영자 등에게 요청할 수 있다.

- 1. 대기오염물질 배출시설의 가동중지. 단, 계절적 요인으로 인한 가동중지 요청은 11월부터 6월까지 기간 중 필요한 기간으로 한다.
- 2. 대기오염물질 배출시설의 가동시간 변경, 가동률 조정 또는 대기오염방지시설의 효율 개선
- 3. 그 밖에 사업장 비산먼지 저감 등 미세먼지등의 배출 저감 및 관리를 위한 조치

❖ 미세먼지 저감 및 관리에 관한 특별법 시행규칙 입법예고안

제8조(비상저감조치의 시행 기준) ① 시·도지사는 법 제18조제1항 전단에 따라 다음 각 호 중 어느 하나에 해당할 때 비상저감조치를 시행할 수 있다.

- 1. 당일(비상저감조치 시행일의 전날을 의미한다. 이하 같다) 초미세먼지 평균 농도가 $50\mu g/m^3$ 를 초과하고, 다음날(비상저감조치 시행일을 의미한다. 이하 같다)의 초미세먼지 24시간 평균 농도가 $50\mu g/m^3$ 를 초과할 것으로 예측되는 경우
- 2. 당일「대기환경보전법 시행령」제2조제3항제2호에 따른 초미세먼지 주의보 또는 경보가 발령되고, 다음날의 초미세먼지 24시간 평균 농도가 50μg/m³를 초과할 것으로 예측되는 경우
- 3. 다음날의 초미세먼지 24시간 평균 농도가 75μg/m³를 초과할 것으로 예측되는 경우
- ② 제1항 각 호와 관련하여 적용 방식 등 세부사항은 환경부장관이 시·도지사와 협의하여 정한다.

참고: 관련 법률 – 대기환경보전법

❖ 대기환경보전법

제8조(대기오염에 대한 경보) ①시·도지사는 대기오염도가「환경정책기본법」제12조에 따른 대기에 대한 환경기준 (이하 "환경기준"이라 한다)을 초과하여 주민의 건강·재산이나 동식물의 생육에 심각한 위해를 끼칠 우려가 있다고 인정되면 그 지역에 대기오염경보를 발령할 수 있다. 대기오염경보의 발령 사유가 없어진 경우 시·도지사는 대기오염경보를 즉시 해제하여야 한다. <개정 2011.7.21.>

②시·도지사는 대기오염경보가 발령된 지역의 대기오염을 긴급하게 줄일 필요가 있다고 인정하면 기간을 정하여 그 지역에서 자동차의 운행을 제한하거나 <mark>사업장의 조업 단축을 명하거나, 그 밖에 필요한 조치</mark>를 할 수 있다.

③제2항에 따라 자동차의 운행 제한이나 사업장의 조업 단축 등을 명령받은 자는 <mark>정당한 사유가 없으면 따라야 한다</mark>.

④대기오염경보의 대상 지역, 대상 오염물질, 발령 기준, 경보 단계 및 경보 단계별 조치 등에 필요한 사항은 대통령령으로 정한다.

13

참고: 관련 법률 - 대기환경보전법 시행령

❖ 대기환경보전법 시행령

제2조(대기오염경보의 대상 지역 등) ① 법 제8조제4항에 따른 대기오염경보의 대상 지역은 특별시장 \cdot 광역시장 \cdot 특별자치시장 \cdot 도지사 또는 특별자치도지사(이하 "시 \cdot 도지사"라 한다)가 필요하다고 인정하여 지정하는 지역으로 한다. <개정 2013.1.31., 2014.2.5., 2016.7.26.>

- ② 법 제8조제4항에 따른 대기오염경보의 대상 오염물질은 「환경정책기본법」제12조에 따라 환경기준이 설정된 오염물질 중 다음 각 호의 오염물질로 한다. <개정 2012.7.20., 2014.2.5.>
- 1. 미세먼지(PM-10) 2. 미세먼지(PM-2.5) 3. 오존(O3)
- ③ 법 제8조제4항에 따른 대기오염경보 단계는 대기오염경보 대상 오염물질의 농도에 따라 다음 각 호와 같이 구분하되, 대기오염경보 단계별 오염물질의 농도기준은 환경부령으로 정한다. <개정 2014.2.5.>
- 1. 미세먼지(PM-10): 주의보, 경보 2. 미세먼지(PM-2.5): 주의보, 경보 3. 오존(O3): 주의보, 경보, 중대경보
- ④ 법 제8조제4항에 따른 경보 단계별 조치에는 다음 각 호의 구분에 따른 사항이 포함되도록 하여야 한다. 다만, 지역의 대기오염 발생 특성 등을 고려하여 특별시·광역시·특별자치시·도·특별자치도의 조례로 경보 단계별 조치사항을 일부 조정할 수 있다. <개정 2013.1.31., 2014.2.5.>
 - 1. 주의보 발령 : 주민의 실외활동 및 자동차 사용의 자제 요청 등
- 2. 경보 발령 : 주민의 실외활동 제한 요청, 자동차 사용의 제한 및 사업장의 연료사용량 감축 권고 등
- 3. 중대경보 발령 : 주민의 실외활동 금지 요청, 자동차의 통행금지 및 사업장의 조업시간 단축명령 등

참고: 관련 법률 - 대기환경보전법 시행규칙

❖ 대기환경보전법 시행규칙

제14조(대기오염경보 단계별 대기오염물질의 농도기준) 영 제2조제3항에 따른 대기오염경보 단계별 대기오염물질의 농도기준은 별표 7과 같다.

[별표 7] <개정 2015.12.10.>

대기오염경보 단계별 대기오염물질의 농도기준(제14조 관련)

대상물질	경보단계	발령기준	해제기준
미세먼지	주의보	기상조건 등을 고려하여 해당지역의 대기자동측정소 PM-10 시간당 평균농도가 150μg/m² 이상 2시간 이상 지속인 때	주의보가 발령된 지역의 기상조건 등을 검토하여 대기자동측 정소의 PM-10 시간당 평균농도가 100μg/m³미만인 때
(PM-10)	경보		경보가 발령된 지역의 기상조건 등을 검토하여 대기자동측 정소의 PM-10 시간당 평균농도가 150µg/m³ 미만인 때는 주의보로 전환
미네머디	주의보		주의보가 발령된 지역의 기상조건 등을 검토하여 대기자동 측정소의 PM-2.5 시간당 평균농도가 50μg/m² 미만인 때
미세먼지 (PM-2.5) 경보	경보	기상조건 등을 고려하여 해당지역의 대기자동측정소 PM-25 시간당 평균능도가 180μg/m³ 이상 2시간 이상 지속인 때	경보가 발령된 지역의 기상조건 등을 검토하여 대기자동 측정소의 PM-2.5 시간당 평균농도가 90μg/㎡ 미만인 때는 주의보로 전환
	주의보	기상조건 등을 고려하여 해당지역의 대기자동측정소 오 존농도가 0.12ppm 이상인 때	주의보가 발령된 지역의 기상조건 등을 검토하여 대기자동 측정소의 오존농도가 0.12ppm 미만인 때
오존	경보	기상조건 등을 고려하여 해당지역의 대기자동측정소 오 존농도가 0.3ppm 이상인 때	경보가 발령된 지역의 기상조건 등을 고려하여 대기자동 측정소의 오존농도가 0.12ppm 이상 0.3ppm 미만인 때는 주의보로 전환
	중대경보	기상조건 등을 고려하여 해당지역의 대기자동측정소 오 존농도가 0.5ppm 이상인 때	증대경보가 발령된 지역의 기상조건 등을 고려하여 대기 자동측정소의 오존농도가 0.3ppm 이상 0.5ppm 미만인 때는 경보로 전환

참고: 수도권 고농도 미세먼지 비상저감조치 시행 매뉴얼

❖ 수도권 고농도 미세먼지 비상저감조치 시행 매뉴얼(2017.10)

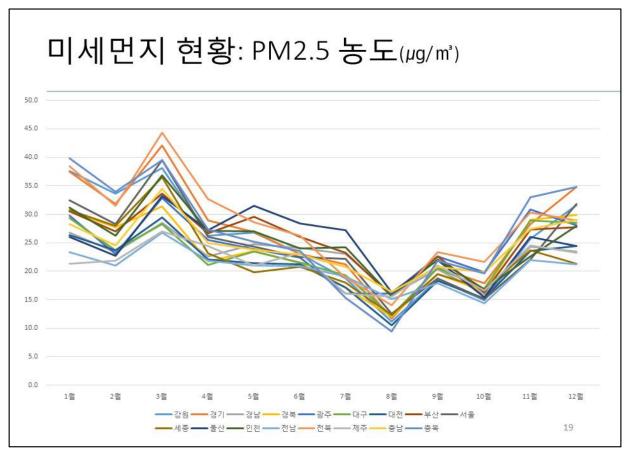
제3절 비상저감조치 유형

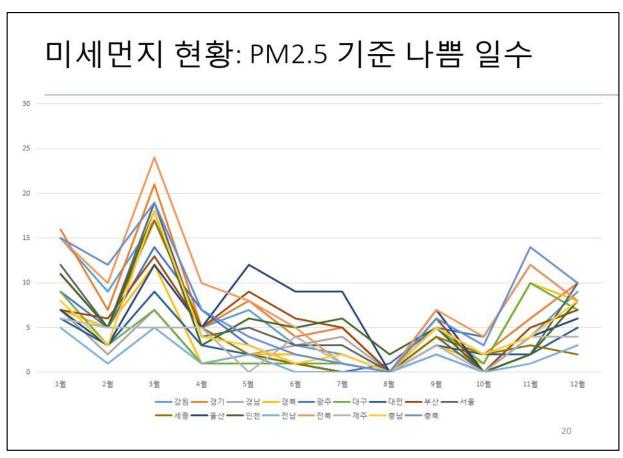
가. 수도권 전체발령

- (개요) 고농도 미세먼지 지속시 단기적 대기질 개선을 위해 차량2부제, 사업장·공사장 운영 단축·조정 등 특단의 저감조치 시행('17.2.15)
- (발령요건) ① 당일 17시 기준 PM2.5 주의보 발령(9곳 경보권역 중 1곳 이상), ② 당일 PM2.5 16시간(0~16시) 평균 50μg/m³ 초과(서울·인천·경기 모두), ③ 다음날 예보 PM2.5 3시간 이상 '매우나쁨'(4곳 예보권역 중 1곳 이상)
- (참여범위) 수도권지역 공공부문 필수, 민간부문 자율 참여
- 나. 수도권 공공발령
- (개요) 공공부문의 솔선수범 차원에서 「수도권 전체발령」의 발령기준을 완화하여 별도로「수도권 공공발령」추가 시행('17.4.5)
- (발령요건) ① 당일 PM2.5 16시간(0~16시) 평균 50μg/m³ 초과(서울·인천·경기 모두), ② 다음날 예보 PM2.5 '나쁨 (50µg/m³ 초과)' 이상(4곳 예보권역 모두)
- (참여범위) 수도권지역 공공부문 필수 참여, 민간부문 참여 없음
 - ※ 재난문자방송(CBS), TV 자막방송 등 대국민 전파는 실시하지 않음

비고 1. 해당 지역의 대기자동측정소 PM-10 또는 PM-2.5의 권역별 평균 농도가 경보 단계별 발령기준을 초과하면 해당 경보를 발령할 수 있다. 2. 오존 농도는 1시간당 평균농도를 기준으로 하며, 해당 지역의 대기자동측정소 오존 농도가 1개소라도 경보단계별 발령기준을 초과하면 해당 경보를 발 령할 수 <u>있다.</u>

- 1. 환경급전의 개념 및 유형
- 2. 미세먼지 현황
- 3. 발전 및 배출 현황
- 4. 비상저감조치 효과 분석
- 5. 비상저감조치 강화 방향

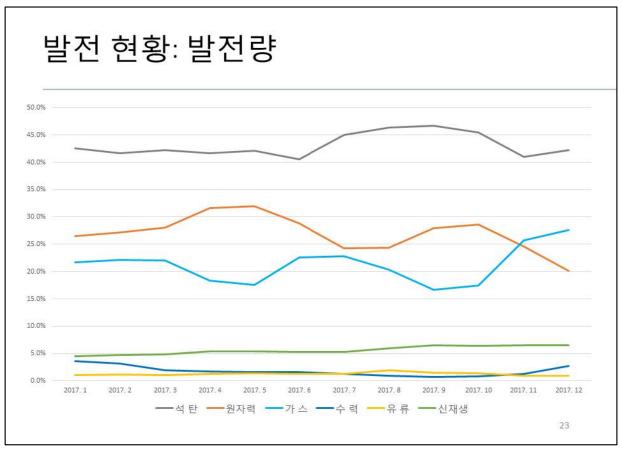


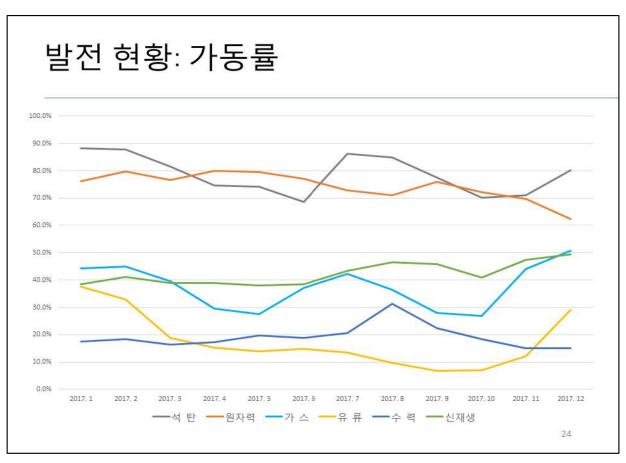

미세먼지 현황: 2017 PM2.5 농도

지역 _	일평균	나쁨	주의보	전일주의보 /당일나쁨	전일나쁨 /당일나쁨
	μg/m³	일수	일수	일수	일수
강원	25.5	72	16	12	39
경기	27.0	89	19	13	51
경남	22.8	37	2	2	14
경북	22.6	43	7	5 6	18
광주	24.1	69	13	6	38
대구	23.8	58	11	7	28
대전	21.3	36	6	3	14
부산	25.4	65	6	4	33
서울	24.6	67	15	10	35
세종	22.5	52	8	7	26
울산	24.9	73	9	7	42
인천	24.8	64	14	8	31
전남	20.4	20	0	0	8
전북	28.5	103	23	17	68
제주	20.6	32	12	5	10
충남	23.4	50	8	4	24
충북	28.0	100	34	17	60
수도권(max)	28.1	90	22	13	52
수도권(min)	23.0	57	9	6	26
평균	24.1	60.6	11.9	7.5	31.7

자료: 국립환경과학원, 2017년 도시대기측정망 자료 가공

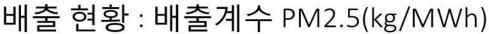
- 1. 환경급전의 개념 및 유형
- 2. 미세먼지 현황
- 3. 발전 및 배출 현황
- 4. 비상저감조치 효과 분석
- 5. 비상저감조치 강화 방향

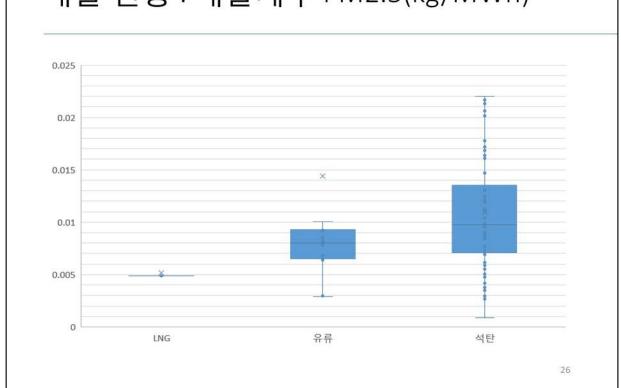



발전 현황: 2017년

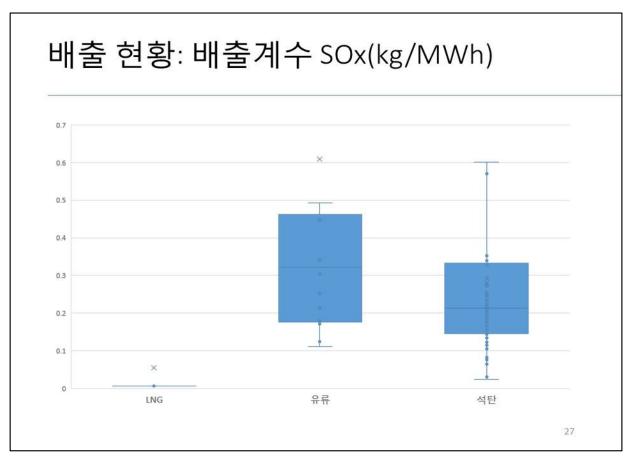
	석 탄	원자력	가 스	수 력	유 류	신재생	전체
발전설비(MW)	36,709	22,529	7,838	6,489	4,155	9,187	116,908
비중	31.4%	19.3%	32.4%	5.6%	3.6%	7.9%	100.0%
발전량(GWh)	260,036	161,042	130,037	11,391	7,460	33,157	603,124
비중	43.1%	26.7%	21.6%	1.9%	1.2%	5.5%	100.0%
가동률	86.1%	80.6%	41.4%	20.0%	20.6%	45.7%	61.5%

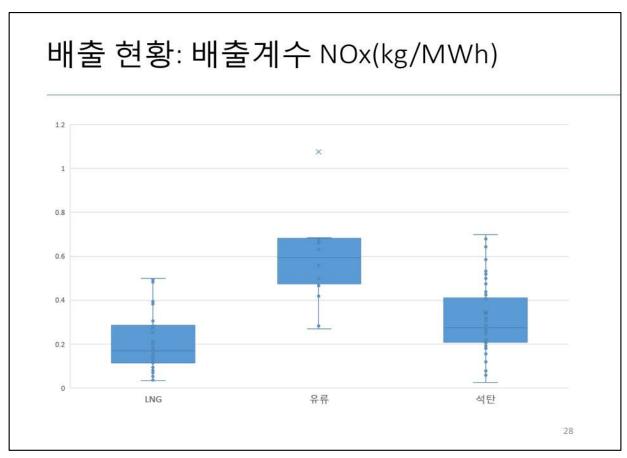
주: 발전설비는 연말기준, 발전량은 연간발전량, 가동률은 월별 가동률의 평균 자료: 한국전력, 1712_전력통계속보(470호).xlsx





발전부문 배출 현황 (화석연료)


	발전량(0	∃Wh)		배출	량(톤)	
	연간	일평균	PM2.5	SOx	NOx	CO2
전체	366,595	1,004.37	2,962	61,105	84,218	244,241,966
석탄	233,076	638.57	2,294	57,904	66,181	193,919,622
LNG	127,855	350.29	616	1,092	14,301	46,347,364
유류	5,664	15.52	53	2,108	3,736	3,974,980
	366,595	1,004.37	2,962	61,105	84,218	244,241,966
석탄	233,076	638.57	2,294	57,904	66,181	193,919,622
수도권	39,450	108.08	212	5,573	4,078	32,822,128
충청	116,099	318.08	1,186	25,127	30,494	96,594,366
영남	53,774	147.32	654	21,130	23,121	44,739,600
호남	8,026	21.99	68	2,990	3,829	6,677,629
강원	15,728	43.09	173	3,085	4,659	13,085,900
LNG	127,855	350.29	616	1,092	14,301	46,347,364
수도권	82,235	225.30	401	651	8,298	29,810,331
충청	11,561	31.67	49	165	1,818	4,190,747
영남	16,818	46.08	82	169	2,502	6,096,375
호남	14,681	40.22	72	91	1,327	5,321,872
강원	2,560	7.01	12	16	355	928,039


자료: 발전량 및 배출량은 전력거래소 및 환경공단 TMS DATA 기반산정. PM2.5는 TSP의 분율 0.7925를 적용하여 계산. LNG의 Sox 및 PM2.5 배출량은 CAPSS 2014 배출계수, 0.006195, 0.00488 kg/MWh 적용하여 계산. CO2는 석탄 832, LNG 362.5, 유류 701.8 kg/MWh 계수 적용.

- 1. 환경급전의 개념 및 유형
- 2. 미세먼지 현황
- 3. 발전 및 배출 현황
- 4. 비상저감조치 효과 분석
- 5. 비상저감조치 강화 방향

- ❖ 상한제약입찰 개시 시나리오 (2017, PM2.5기준)
- A. 미세먼지 농도시나리오
 - 1. 전일주의보/당일나쁨
 - 전일 2시간 이상 75μg/m³ 초과, 당일 평균 35μg/m³ 초과
 - 2. 전일나쁨/당일나쁨
 - 전일 평균 35μg/m³ 초과, 당일 평균 & 35μg/m³ 초과
 - 3. 당일주의보
 - 당일 2시간 이상 75µg/㎡ 초과
 - 4. 당일나쁨
 - 당일 평균 35μg/m³ 초과

- B. 지역별 시나리오
 - 1. 권역별 제약: 각 권역 한 지자체에서 기준 충족 시 개시가. 수도권/충남 나. 경남/전남 다. 강원
 - 2. 시도별 제약: 각시도에서 기준 충족 시 개시 가. 수도권 나. 충남 다. 경남 라. 전남 마. 강원 * 수도권의 경우 3개 시도 중 하나만 조건을 충족해도 개시
- C. 발전소 배출특성 반영
 - 1. 모든 석탄발전소 대상 20% 감발방식
 - 2. 50% 하위발전소 대상 20% 감발방식

31

상한제약입찰 시나리오

- 0. 미세먼지 기본시나리오1: 산업부/환경부 협의안
 - A. 미세먼지 농도
 - 전일 2시간 이상 75μg/m³ 초과, 당일 평균 50μg/m³ 초과
 - B. 지역별 시나리오
 - 개별시도별 발령: 인천, 충남, 강원, 경남, 전남
 - C. 발전소 배출특성 반영
 - 하위 50% 대상 20% 감발

- 0. 미세먼지 기본시나리오2: 미세먼지특별법안
 - A. 미세먼지 농도 : 다음 조건 중 하나만 충족 시 발령
 - 전일 주의보, 당일 평균 50μq/m³ 초과
 - 전일 평균 50μg/m³ 초과, 당일 평균 50μg/m³ 초과
 - 당일 평균 75µg/m³ 초과
 - B. 지역별 시나리오
 - 개별시도별 발령; 인천, 충남, 강원, 경남, 전남
 - 시도별제약: 수도권, 충남, 강원, 경남, 전남
 - 권역별제약: 수도권/충남, 강원, 경남/전남
 - C. 발전소 배출특성 반영
 - 모든 석탄발전소 대상 20% 감발
 - 하위 50% 대상 20% 감발
 - D. 기간제약 시나리오
 - 11월~4월 6개월 기간제약

33

상한제약입찰 시나리오

❖ 기본 시나리오

		전일주의보/ 당일나쁨	전일나쁨/ 당일나쁨	당일주의보	당일나쁨
모든석탄발	대권역	SC1	SC1	SC1	SC1
전기대상	광역	SC5	SC6	SC7	SC8
50%하위	대권역	SC9	SC10	SC11	SC12
발전기대상	광역	SC13	SC14	SC15	SC16

❖ 미세먼지특별법 시나리오

전일주의보/ 당일나쁨	개별시도발령	광역발령	대권역발령	기간발령 (11월~4월)
모든 석탄발전기대상	특1	특2	특3	계절1
50% 하위발전기대상	특4	특5	특6	계절2

❖ 비상저감조치 발령일수

		전일주의보/ 당일나쁨	전일나쁨/ 당일나쁨	당일주의보	당일나쁨
모든석탄발	대권역	27	85	41	125
전기대상	광역	15	66	28	108
	대권역	27	85	41	125
발전기대상	광역	15	66	28	108

❖ 비상저감조치 발령일수

전일주의보/ 당일나쁨	개별시도발령	광역발령	대권역발령	기간발령 (11월~4월)
모든 석탄발전기대상	12	18	22	181
50% 하위발전기대상	12	18	22	181

^{*} 산업부/환경부 협의안 발령일수: 8일

35

상한제약입찰 효과 분석방법

- ❖ 석탄상한제약 입찰로 인한 발전기 대체 방법
 - ✓비상저감조치의 내용은 석탄화력발전기를 20% 감발운전하고, 부족한 발전 량은 LNG발전으로 대체하는 것으로 한정
 - ✓2017년 미세먼지 농도 데이터에 기반하여, 시나리오별 시행일, 시행지역, 시행대상발전기 선정
 - ✓시행대상발전기의 경우 시행일에 한해 발전량 20%를 삭감하고 삭감된 발전량은 LNG 복합발전기의 추가 가동에 의해 보완
 - ✓LNG 복합발전기의 추가 우선순위는 LNG 복합발전기의 변동비에 따라 결정하되, 시행지역은 고려하지 않음. 즉 시행지역 이외의 LNG 발전기도 변동비가 낮은 경우 추가발전기로 선정
 - ✓한계: 포괄적인 의미의 계통 제약 (송전선로 용량, 전류흐름 등)은 고려되지 않아, 분석결과는 효과의 최대치일 가능성이 높음

상한제약입찰 효과 분석방법

❖ 오염물질 감축량 산정 방법

- ✓ PM2.5, SOx, NOx 배출량/감축량 감발 운전하는 석탄발전기와 추가 운전하는 LNG발전기의 2017년 실제 배출계수(TMS 및 발전량 데이터 활용 산정)를 이용하여 계산
- ✓CO2 배출량/감축량은 개별발전기별 측정데이터가 없기 때문에, 제2차 에너 지기본계획 수립 시 적용한 발전연료별 배출계수를 이용하여 계산

37

상한제약입찰 효과

❖ 오염물질 감축량 (톤/년)

오염물질감축량(톤)	SC1	SC2	SC3	SC4	
PM2.5	16	49	23	77	
SOx	518	1625	756	2,525	
NOx	408	1257	586	1,959	
CO2	1,137,375	3,594,246	1,677,889	5,483,099	
오염물질감축량(톤)	SC5	SC6	SC7	SC8	
PM2.5	3	22	7	45	
SOx	113	742	225	1,527	
NOx	88	597	185	1,207	
CO2	265,905	1,582,679	518,174	3,184,909	

❖ 오염물질 감축량 (톤/년)

오염물질감축량(톤)	SC9	SC10	SC11	SC12	
PM2.5	9	29	13	46	
SOx	314	1,026	458	1,644	
NOx	221	741	329	1,213	
CO2	515,013	1,660,211	756,885	2,599,824	
오염물질감축량(톤)	SC13	SC14	SC15	SC16	
PM2.5	2	12	3	27	
SOx	72	518	143	1072	
NOx	50	384	106	812	
CO2	109,243	751,978	2140,48	1,573,064	

39

상한제약입찰 효과

❖ 시행일 오염물질 감축률

오염물질감축률	SC1	SC2	SC3	SC4
PM2.5	7.34%	7.17%	7.01%	7.55%
SOx	11.47%	11.42%	11.01%	12.06%
NOx	6.54%	6.41%	6.20%	6.79%
CO2	6.30%	6.32%	6.12%	6.56%
오염물질감축률	SC5	SC6	SC7	SC8
PM2.5	2.69%	4.02%	2.92%	5.08%
SOx	4.51%	6.72%	4.80%	8.44%
NOx	2.53%	3.92%	2.86%	4.84%
CO2	2.65%	3.58%	2.77%	4.41%

❖ 시행일 오염물질 감축률

오염물질감축률	SC9	SC10	SC11	SC12
PM2.5	4.12%	4.21%	3.99%	4.52%
SOx	6.95%	7.21%	6.67%	7.86%
NOx	3.55%	3.78%	3.48%	4.21%
CO2	2.85%	2.92%	2.76%	3.11%
오염물질감축률	SC13	SC14	SC15	SC16
PM2.5	1.25%	2.31%	1.53%	3.03%
SOx	2.85%	4.68%	3.05%	5.93%
NOx	1.46%	2.52%	1.64%	3.26%
CO2	1.09%	1.70%	1.14%	2.18%

41

상한제약입찰 효과

❖ 산업부 및 특별법 시행시나리오별 감축량 및 감축률

오염물질 감축량(톤)	산업	특1	특2	특3	특4	특5	특6	계절1	계절2
PM2.5	0.7	3	4	13	2	2	7	164	105
SOx	32	94	123	415	63	77	262	5,987	4,542
NOx	28	90	90	327	48	50	187	5,044	3,725
CO2	38,983	204,249	307,746	899,206	92434	122,943	428,347	10,840,634	6,129,930
 오염물질 감축률									
PM2.5	1.01%	3.25%	2.42%	7.17%	1.61%	1.25%	4.19%	11.16%	7.16%
SOx	2.43%	4.67%	4.07%	11.28%	3.12%	2.54%	7.11%	19.76%	14.99%
NOx	1.51%	3.24%	2.16%	6.44%	1.74%	1.20%	3.69%	12.08%	8.92%
CO2	0.73%	2.54%	2.56%	6.11%	1.15%	1.02%	2.91%	8.95%	5.06%

❖ 발전부문 연간 배출량 대비 감축률

		SC1	SC2	SC3	SC4	SC5	SC6	SC7	SC8
PM2.5		0.54%	1.67%	0.79%	2.59%	0.11%	0.73%	0.22%	1.50%
SOx		0.85%	2.66%	1.24%	4.13%	0.19%	1.21%	0.37%	2.50%
NOx		0.48%	1.49%	0.70%	2.33%	0.10%	0.71%	0.22%	1.43%
CO2		0.47%	1.47%	0.69%	2.24%	0.11%	0.65%	0.21%	1.30%
		SC9	SC10	SC11	SC12	SC13	SC14	SC15	SC16
PM2.5		0.05%	0.42%	0.12%	0.90%	0.05%	0.42%	0.12%	0.90%
SOx		0.12%	0.85%	0.23%	1.75%	0.12%	0.85%	0.23%	1.75%
NOx		0.06%	0.46%	0.13%	0.96%	0.06%	0.46%	0.13%	0.96%
CO2	5	0.04%	0.31%	0.09%	0.64%	0.04%	0.31%	0.09%	0.649
	산업	특1	특2	특3	특4	특5	특6	계절1	계절
PM2.5	0.02%	0.11%	0.12%	0.43%	0.05%	0.06%	0.25%	5.54%	3.559
SOx	0.05%	0.15%	0.20%	0.68%	0.10%	0.13%	0.43%	9.80%	7.439
NOx	0.03%	0.11%	0.11%	0.39%	0.06%	0.06%	0.22%	5.99%	4.429
CO2	0.02%	0.00%	0.120/	0.27%	0.04%	0.05%	0.199/	1 1 1 1 0 /	2 5 1 9

상한제약입찰 효과

❖ 상한제약 편익

- 오염물질 감축에 따른 환경비용의 저감
- 오염물질별 단위 환경비용 (원(2016년)/톤)

PM2.5	SOx	NOx	CO2
66,352,319	50,754,755	36,651,249	43,354

자료: 조세재정연구원(2018), 54쪽. 석탄에 대해 소득탄력성 0.8 적용값. CO2값은 미국정부기구에서 추정한 탄소의 사회적비용 추정값을 전호철(2017)이 편익이전한 값 사용.

❖ 상한제약 비용

- 감발하는 석탄발전기 변동비와 추가되는 가스발전기 변동비의 차이

❖ 시나리오별 편익 및 비용

(단위:백만원)	SC1	SC2	SC3	SC4
편익	91,624	287,646	134,144	442,740
비용	85,684	257,529	123,928	388,654
순편익(연간)	5,940	30,116	10,216	54,086
순편익(시행일당)	220	354	249	433
(단위:백만원)	SC5	SC6	SC7	SC8
편익	20,700	129,589	41,102	262,760
비용	19,779	109,622	36,571	216,967
순편익(연간)	921	19,967	4,531	45,793
순편익(시행일당)	61	303	162	424

45

상한제약입찰 효과

❖ 시나리오별 편익 및 비용

(단위:백만원)	SC9	SC10	SC11	SC12
편익	46,981	153,157	69,015	243,653
비용	32,399	98,992	46,741	152,755
순편익(연간)	14,582	54,166	22,274	90,898
순편익(시행일당)	540	637	543	727
(단위:백만원)	SC13	SC14	SC15	SC16
편익	10,324	73,768	20,648	154,116
비용	7,690	44,571	13,366	89,170
순편익(연간)	2,634	29,197	7,282	64,946
순편익(시행일당)	176	442	260	601

❖ 산업부 및 환경부 시행시나리오별 편익 및 비용

(단위: 백만원)	산업	특1	특2	특3	특4	특5	특6	계절1	계절2
편익	4,408	17,117	23,089	72,894	9,063	11,168	39,233	969,599	639,811
비용	2,843	14,485	21,842	68,550	5,991	7,748	28,154	805,981	407,940
순편익 (연간)	1,565	2,632	1,247	4,344	3,072	3,420	11,079	163,618	231,872
순편익 (시행일당)	196	219	69	197	256	190	504	904	1281

47

상한제약입찰 효과

- ❖ PM2.5 연간 감축률 (발전부문 배출량 대비)
- 기본시나리오

		전일주의보/ 당일나쁨	전일나쁨/ 당일나쁨	당일주의보	당일나쁨
모든석탄발	대권역	0.54%	1.67%	0.79%	2.59%
전기대상	광역	0.11%	0.73%	0.22%	1.50%
50%하위	대권역	0.05%	0.42%	0.12%	0.90%
발전기대상	광역	0.04%	0.31%	0.09%	0.64%

• 특별법안

전일주의보/ 당일나쁨	개별시도발령	광역발령	대권역발령	기간발령 (11월~4월)	
모든 석탄발전기대상	0.11%	0.12%	0.43%	5.54%	
50% 하위발전기대상	0.05%	0.06%	0.25%	3.55%	

• 산업(안): 0.02%

- ❖ 순편익(백만원)
- 기본시나리오

		전일주의보/ 당일나쁨	전일나쁨/ 당일나쁨	당일주의보	당일나쁨
모든석탄발	대권역	5,940	30,116	10,216	54,086
전기대상	광역	921	19,967	4,531	45,793
50%하위	대권역	14,582	54,166	22,274	90,898
발전기대상	광역	2,634	29,197	7,282	64,946

• 특별법안

전일주의보/ 당일나쁨	개별시도발령	광역발령	대권역발령	기간발령 (11월~4월)
모든 석탄발전기대상	2,632	1,247	4,344	163,618
50% 하위발전기대상	3,072	3,420	11,079	231,872

• 산업(안): 1,565

- 1. 환경급전의 개념 및 유형
- 2. 미세먼지 현황
- 3. 발전 및 배출 현황
- 4. 비상저감조치 효과 분석
- 5. 비상저감조치 강화 방향

발전설비 예비율 현황 및 전망

< 연도별 전력수급 전망 (단위: GW) >

연도 최대전	+15117434	*171401	7474444	과부족	신규 설비		최종	설비
	쇠내신덕	확정설비	적정설비		LNG	양수	설비규모	예비율
2017	85.2	107.8	101.4	6.4			107.8	26.5%
2018	87.2	110.7	103.7	7.0	_		110.7	27.1%
2019	88.5	113.4	105.4	8.0			113.4	28.0%
2020	90.3	116.9	107.5	9.4			116.9	29.4%
2021	92.1	119.9	109.6	10.3			119.9	30.2%
2022	93.3	122.6	111.0	11.5			122.6	31.4%
2023	94.5	121.9	112.5	9.4			121.9	29.0%

출처: 제8차 전력수급기본계획

51

발전설비 예비율 현황 및 전망

❖ 제8차 전력수급기본계획 대비 건설 지연 물량 (2022년말까지)

		O라	요라 저지되	2018년말	연말기준 설비용량 감소			
		용량	전기본 준공일		2019	2020	2021	2022
	신고리 #4	1,400	2018.09	2019.08				
원자력	신고리 #5	1,400	2022.01	2023.03				1,400
발전소	신한 울 #1	1,400	2018.12	2019.11				
	신한울 #2	1,400	2019.10	2020.09	1,400			
ue!	신서천	1,000	2020.03	2021.03		1,000		
석탄 발전소	고성하이 #1	1,040	2020.04	2020.10				
	고성하이 #2	1,040	2020.10	2021.04		1,040		
제8차 전력수급기본계획 대비 지연물량						2,040	15	1,400
제8차 전력수급기본계획 상 초과 설비						9,400	10,300	11,500
2018.12 기준 초과 설비					6,600	7,360	10,300	10,100

2018년말 예상 준공일은 전력거래소, "발전소 건설사업 추진현황('18년도 4분기)" 참고

석탄발전 가동정지 물량

❖ 석탄발전소 겨울철(12월~5월) 가동정지 물량 추정

	2019	2020	2021	2022
석탄발전용량(MW)	32,681	33,721	36,811	39,941
초과설비용량(MW)	6,600	7,360	10,300	10,100
초과설비비중 (석탄용량대비)	20.2%	21.8%	28.0%	25.3%
가동정지 가능 기수*	16	17	23	23
가동정지 발전기의 가중평균 배출	·계수** (가동정지	비대상발전기 대비)	\$
PM2.5	1.95	1.87	1.82	1.82
SOx	2.82	2.73	2.58	2.58
NOx	2.78	2.72	2.52	2.52
가동정지 발전기의 배출량 비중**	* (석탄발전 배출링	; 대비)		
PM2.5	33.0%	34.3%	41.4%	38.1%
SOx	41.6%	43.2%	50.1%	46.6%
NOx	41.3%	43.2%	49.5%	46.0%

^{*}NOx 배출계수가 높은 순서 순

53

비상저감조치 강화 방향

- ❖ 발전부문 미세먼지 고농도 대응 정책의 한계
 - ✓ 기존 30년 이상 노후석탄발전소의 봄철 가동 정지는 정지발전소의 용량도 제한적이며, 겨울철 미세먼지 고농도 대응 어려움
 - ✓ 미세먼지 고농도 시 비상저감조치는,
 - 1. 미세먼지 2차 생성시간을 충분히 고려하지 못하고
 - 2. 20% 발전량 감축으로는 미세먼지 실질 감축 어려움
- ❖ 발전부문 고농도 비상저감조치 강화 방향
 - ✓ 향후 5년간 적정 설비예비율을 초과하는 상황을 고려하여,미세먼지 다배출순으로, 초과용량(16~23기)만큼 11월~4월까지 가동 정지
 - ✓ 최대전력이 발생하지 않는 11월, 3월, 4월에는 이 3개월의 최대전력과 동계 최대전력과 차이(5GW 이상, 2010~2018년 평균)에 해당하는 10기의 추가 가동정지 검토
 - ✓ 가동정지하지 않는 모든 석탄발전기는 11월~4월까지 80% 상한제약

^{**}배출계수는 2017년 TMS 데이터 기준

^{***}석탄발전기의 가동률이 동일하다는 가정 하의 추정값

석탄발전 감축에 따른 전기요금 영향

박 광 수 에너지경제연구원 선임연구위원

석탄발전 감축에 따른 전기요금 영향

2019. 4. 15

박광수

- 셔론
- 2 발전용에너지 세제 현황과 문제점
- **3** 발전용세제 개편과 전기요금(분석방법)
- 4 발전용 세제 개편과 전기요금(분석결과)
- 5 정책시사점

서 론

- □ 시장실패가 발생할 경우 정부의 적절한 개입은 자원배분의 효율성을 개선
 - 전력시장은 시장실패가 발생하는 대표적인 예 : 독점적 산업구조, 발전부문의 환경오염 등
 - 정부는 가격규제나 외부비용을 가격에 내재화 함으로써 문제를 해결
- □ 정부가 시장실패에 제대로 대응하고 있는가?
 - 외부비용을 포함한 사회적 비용이 제대로 반영되고 있는지, 정부의 요금 규제는 적절한지
- □ 발전용 에너지 세제 조정을 발전부문의 변화를 유도할 수 있는지, 이를 위해서는 어느 정도의 조정이 필요한지
 - 발전부문 세제 조정으로 발전구성의 변화, 전기요금에 대한 영향, 환경에 대한 영향을 분석
- □ 정부의 정책 방향에 대한 시사점은 무엇인가?

3

2

발전용 에너지 세제 현황과 문제점

- 발전용 에너지원 및 설비에 대한 제세 부담금 현황
 - □ 유연탄 : 개별소비세와 지역자원시설세 부과
 - 관세 면세, 부가가치세는 환급대상(소비형 부가가치세)이며, 지역자원시설세(0.3원/kWh)는 전력시장 정산과 정에서 50% 환급
- □ LNG는 관세, 개별소비세, 지역자원시설세 및 수입부과금 부과
 - 관세는 동절기 할당 관세로 2% (하절기: 3% 적용), 지역자원시설세(0.3원/kWh), 수입부과금 등 제세부담금 부과, 부가가치세는 환급대상. 안전관리부담금 면세, 지역자원시설세 역시 50% 환급
- □ 원전은 발전에너지원 중 유일하게 비과세(지역자원시설세 제외) , 타 발전원 대비 원자력연구개발기금, 사업자지원금, 사용후핵연료관리부담금 등 부담금 비중이 상대적으로 높음
 - 지방세인 지역자원시설세 1.0원/kWh(환급 없음)만 부과

발전용 에너지 세제 현황과 문제점

< 개정 전 발전부문 전원별 조세 및 부담금 (단위: 원/kg, I, kWh) >

	조세 구분	원자력(우라늄, 원/kWh)	발전용 유연탄(원/k g)	발전용 LNG(원/kg)	발전용 중유(원/
	관세	면세(0%)	면세(0%)	3%(할당 관세 2%)	3%(수입가격)
	개별소비세(원/kg)	면세	36(33/39)	60(42)	17
	교통·에너지·환경세	-	-	-	-
조세	교육세(탄력세율)	-	-	-	2.55
(국세+지방세)	지방주행세	-	-	-	-
	부가가치세	실효세율 면세	실효세율 면세	실효세율 면세	실효세율 면세
	지역자원시설세(원/kWh)	1.0	0.3	0.3	0.3
조세 소계(관세	, 지역자원시설세 제외): A	0(원/kWh) (0원/kWh)	36(원/kg) (12.79원/kWh)	60(원/kg) (7.22원/kWh)	19.55(원/L) / 4.31(원/kWh)
조세 4	노계(관세 제외): B	1.0(원/kWh)	13.09(원/kWh)	7.52(원/kWh)	4.61(원/kWh)
	수입부과금(원/kg)			24.2	16
	품질검사수수료	-	-	-	0.469
	안전관리부담금	-	-	5.5(발전용 면세)	-
	판매부과금	-	-	-	-
	전력산업기반기금	-	-	-	-
부담금	사업자지원사업(발주법)*	0.25	-	-	-
	원자력연구개발기금	1.2		-	-
	사용후핵연료관리부담금 (2016년 방사성폐기물관리비용)	4.41 (0.54)	-	-	-
	원자력안전관리부담금 (원자력관계사업자 등의 비용부담금)	0.48	-	-	-
부담금 소계: C		6.34(원/kWh)	0(원/kg)	24.2(원/kg) (2.91원/kWh)	16.47(원/L) (3.63원/kWh)
	세부담금 총계 자원시설세 제외) : D	6.34(원/kWh)	36(원/kg) (12.79원/kWh)	84.2(원/kg) (10.13원/kWh)	36.02(원/L) (7.94원/kWh)
제세부담금	총계(관세 제외) : B+C	7.34(원/kWh)	13.09(원/kWh)	10.43(원/kWh)	8.24(원/kWh)

2

발전용 에너지 세제 현황과 문제점

- □ '2018년 세법개정안' 에서 발전부문 조세체계 합리화를 통한 환경친화적 에너지 세제개편을 확정('18. 7.)
- 발전용 유연탄과 LNG의 개별소비세율을 발열량 기준이 아닌 환경비용을 반영한 조세 체계로 조정
- 유연탄과 ING의 제세부담금 수준을 약 21 비율로 조정하여 상대적으로 친환경 연료인 ING 발전의 부담을 경감
- * 이번 세제개편으로 유연탄과 LNG 발전비중 영향은 거의 없어, 이에 따른 미세먼지(PM, c) 감축량은 427톤으로 전망

현행	개 정 안
□ 발전용 유연탄·LNG에 대한 제세부담금 (kg당) ○ (유연탄) 개별소비세 36원* * 수입부과금, 관세 미부과 ○ (LNG) 제세부담금 91.4원 - 개별소비세 : 60원 - 수입부과금 : 24.2원 - 관세 : 7.2원(수입가격의 2~3%)	□ 유연탄 개별소비세율 인상, LNG 제세부담금(kg당) 인하 ○ (유연탄) 36원 → 46원* * 수입부과금, 관세 미부과 ○ (LNG) 91.4원 → 23원* * 개별소비세, 수입부과금을 현행 비율(7:3)대로 인하 - 60원 → 12원(△48원) - 24.2원 → 3.8원(△20.4원*) * 산업부, 「석유사업법 시행령」 개정

자료: 기획재정부 보도자료(2018. 7. 30), '2018년 세법개정안 상세본', pp. 65. 및 '2018년도 서법개정안 보도자료 문답자료', pp. 38-39

발전용 에너지 세제 현황과 문제점

🌕 발전용 에너지 세제의 문제점

- □ 발전원별 제세부담금은 환경성과 안전성의 외부비용을 적정하게 반영하지 못하여 에너지원간 공정 경쟁 및 형평 문제 발생
 - 세제 개정으로 유연탄의 기본세율(46원/kg)이 발전용 LNG(12원/kg), 보다 높아졌으나 효율이 높아 환경 측면에서 유리한 고열량탄에 높은 세율 부과 : 저열량탄(5,000kcal 미만)은 43원/kg, 고열량탄(5,500kcal 미상)은 49원/kg 세율 적용

< 8차 수급계획 발전원별 대기오염물질외부비용 전제 (원/kWh, 원/kg, ℓ) >

발전원	SOx	NOx	분진	소계(원/kWh)	대기오염 비용(원/kg)	상대비율 (%)
석탄	14.5	15.6	0.7	30.8	82.70	100
LNG	0	9.9	0	9.9	80.78	98

주1) 상대비율은 석탄 100을 기준으로 산정

- □ 동일 연료, 동일 세율 부과 원칙의 예외적 적용은 에너지원간 공정 경쟁을 저해
- 열병합 발전용 유연탄 vs. 전력생산용 유연탄 / 발전용 LNG vs. 집단에너지 및 도시가스 용 LNG(100MW이하 열병합발전 영향) 8.4원/kg
- □ 원전은 사고위험비용 등 화석연료발전과는 다른 형태의 외부성이 존재함에도 불구 모든 조세(개별소비세, 관세 등)가 비과세되고 있어 연료 원간 조세 형평성 문제 발생

7

3

발전용 세제개편과 전기요금(분석방법)

- ◯ 전기요금 구성 및 세제 개편의 전기요금에 대한 영향 개요
- □ 전기요금의 구성
- 전기요금은 도매시장 구매단가에 송배전 비용과 판매 수수료 및 적정투보율을 더하여 계산됨
- 최종소비자는 제세부담금(부가가치세 10%와 전력산 업 기반기금 3.7%)을 추가로 지불
- □ 본 연구에서는 전기요금으로 판매단가를 고려
- 구입단가는 LCOE(균등화발전비용)을 통해 도출
- 판매단가는 지난 10년간의 구입단가와 판매단가 사이의 평균 비율을 적용하여 구함

< 전기요금 구성 항목 >

발전용 세제개편과 전기요금(분석방법)

🔘 세제 개편 시나리오의 전원구성 전환 효과 추정 방식

- <u>주요 시나리오의 석탄과 LNG의 급전우선순위 전환은 전력계통 모의(M-Core)를 통해 도출한 두 연료원간 발전 비중과 이용율 차이를 통해 검증</u>
- M-Core모형 운용을 위한 기초 입력자료는 8차 수급계획의 전력수요 및 설비구성 전망, 발전원별 예방정비계획일과 고장정지율, 열량단가, 소내소비율, 송·배전 손실률 등을 준용
- LNG발전 열량단가는 직도입과 가스공사로부터 공급받는 LNG발전기를 구분하여 분석 수행
- 기준용량가격(RCP), 시간대별용량가격계수(TCF), 지역별 용량가격계수(RCF), 그리고 연료전환성과계수(FSF)는 한국전력거래소의 '전력시 장. 전력계통 운영정보'의 2017년도 시장운영규칙 및 특성정보 등을 공히 적용
- 발전량 전망은 8차 수급계획의 '기준 시나리오 ' 의 전제를 공히 적용하고 있는데, 이는 '목표 시나리오 ' 의 온실가스 배출비용의 변동 비 반영, 석탄발전기 상한제약, 발전부문 세제 개편 등 정책 수단들이 실제로 제도화되지 않고 있는 불확실성을 제외하기 위함임
- 8차 수급계획의 '기준 시나리오'는 원전 이용율 84% / 설계수명 30년 이상 석탄발전기 봄철 제약(3~6월) / 석탄 발전기 성능개선(리트로 핏)을 반영한 것임

9

3

발전용 세제개편과 전기요금(분석방법)

- □ 시나리오 주요 전제
- 발전용 에너지원 가운데 유연탄과 LNG에 대한 개별소비세의 조정만을 고려
- 기준안은 세제 개편 전의 세율을 채택(유연탄 36원/kg, LNG 60원/kg)
- □ 주요 시나리오

구분	설정 세율 (원/kg)	시나리오 설명
기준안 (RS)	유연탄: 36 / LNG: 60	8차 수급계획(2018년 4월 이후 유연탄 및 LNG 적용 개별소비세 세울 적용)
시나리오 3-2(S3-2)	유연탄: 107 / LNG: 60	LNG 세울 시나리오1-2의 60원/kg 적용 / 한국산업조직학회 대기오염비용 하한치의 <mark>석탄: LNG 상대비율(100:56) 적용</mark>
시나리오 5-2(S5-2)	유연탄: 126 / LNG: 60	유연탄과 LNG의 연료단가(원/xWh)가 역전되는 수준의 <mark>상대세울 적용(상대세울은 100:48)</mark>
시나리오 3(S3)	유연탄: 75 / LNG: 42	LNG 하한탄력세울 고정 / 한국산업조직학회 대기오염비용 하한치의 <mark>석탄: LNG 상대비울(100:56) 적용</mark>
시나리오 4(S4)	유연탄: 108 / LNG: 42	LNG 하한탄력세을 고정 / 한국산업조직학회 대기오염비용 상한치의 <mark>석탄: LNG 상대비율(100:39) 적용</mark>
시나리오 4-1(S4-1)	유연탄:90 / LNG:35	LNG 세울은 시나리오1-1의 35원(g 적용 / 한국산업조직학회 대기오염비용 상한치의 석 <mark>탄: LNG 상대비율(10039) 적용</mark>
시나리오 5-1(S5-1)	유연탄: 118 / LNG: 35	유연탄과 LNG의 연료단가(원/xWh)가 역전되는 수준의 <mark>상대세울 적용(상대세울은 100:30)</mark>
시나리오 6(\$6)	유연탄: 83 / LNG: 81	제8차 수급계획의 대기오염비용 전제치를 개별소비세로 모두 반영 / 석탄과 LNG 상대세율(100:98)

발전용 세제개편과 전기요금(분석결과)

시나리오별 연료 단가 비교(연료단가)

	세율(원/kg)		연료단가(원/kWh)		기준안 대비 연료단가 증감(원/kWh)	
시나리오						
	유연탄	LNG	유연탄	LNG	유연탄	LNG
기준안(RS)	36	60	48.19	81.67	0.00	0.00
시나리오 3-2(S3-2)	107	60	74.64	81.67	26.44	0.00
시나리오 5-2(\$5-2)	126	60	81.71	81.67	33.52	0.00
시나리오 3(S3)	75	42	62.72	79.46	14.53	-2.21
시나리오 4(S4)	108	42	75.01	79.46	26.82	-2.21
시나리오 4-1(S4- 1)	90	35	68.31	78.61	20.11	-3.06
시나리오 5-1(S5- 1)	118	35	78.73	78.61	30.54	-3.06
시나리오 6(S6)	83	81	65.70	84.24	17.51	2.57
2018년 세법개정(안)*	46	12	51.92	73.29	3.72	-8.38

11

4

발전용 세제개편과 전기요금(분석결과)

시나리오별 연료 단가 비교(구입단가)

	20	20년	20	25년	203	30년
시나리오	단가	기준안 대비 변화	단가	기준안 대비 변화	단가	기준안 대비 변화
	(원/kWh)	(%)	(원/kWh)	(%)	(원/kWh)	(%)
유연탄: 36 / LNG: 60	84.6	-	90.5	-	101.3	-
유연탄: 107 / LNG : 60	96.1	13.6	101.8	12.5	112.2	10.7
유연탄: 126 / LNG: 60	98.6	16.6	104.5	15.5	114.5	13.0
유연탄: 75 / LNG : 42	90.7	7.2	96.5	6.7	107.1	5.7
유연탄: 108 / LNG : 42	95.9	13.4	101.7	12.5	111.9	10.5
유연탄: 90 / LNG : 35	92.9	9.8	98.9	9.3	109.0	7.6
유연탄: 118 / LNG : 35	96.8	14.5	102.7	13.5	112.8	11.3
유연탄: 83 / LNG: 81	92.4	9.3	98.5	8.9	108.7	7.3
2018년 세법개정(안)*	84.9	0.4	91.3	1.0	101.9	0.6

발전용 세제개편과 전기요금(분석결과)

🔘 유연탄과 LNG 이용률변화

- □ 유연탄에 대한 세율을 120원 이상으로 인상할 경우 LNG의 이용률이 유연탄 이용률을 초과
- 시나리오 5-2: 2020년 유연탄 이용률 기준안 대비 38.7%p 감소 반면 LNG 이용률 22.1%p 증가.
- □ 개정된 세율 하에서는 변화 거의 없음. 시나리오 5-2 정도의 변화를 유도하기 위해서는 유연탄 세율을 100원/kg 이상으로 인상 필요
 < 주요 시나리오 유연탄괴 LNG 이용률 변화(%) >

ULIZIO	세율(원/kg)	202	20년	202	25년	203	0년
시나리오	유연탄	LNG	유연탄	LNG	유연탄	LNG	유연탄	LNG
기준안(RS)	36	60	80.6	23.0	75.4	18.8	75.1	22.1
시나리오 3-2(S3-2)	107	60	68.2	33.3	65.0	27.8	63.5	31.0
시나리오 5-2(S5-2)	126	60	41.9	55.1	41.4	48.4	39.1	49.8
시나리오 3(S 3)	75	42	76.5	26.5	71.7	22.0	71.0	25.2
시나리오 4(S4)	108	42	59.4	40.6	57.8	34.1	57.0	35.9
시나리오 4-1(S4-1)	90	35	74.1	28.4	69.1	24.3	68.9	26.9
시나리오 5-1(S5-1)	118	35	41.6	55.4	41.1	48.7	38.8	50.1
시나리오 6(S6)	83	81	77.2	25.9	72.3	21.5	71.6	24.7
:018년 세법개정(안)*	46	12	78.3	25.0	72.9	21.0	72.5	24.1

13

4

발전용 세제개편과 전기요금(분석결과)

🔘 발전 비중의 변화

- □ 유연탄에 대한 세율을 120원 이상으로 인상할 경우 LNG의 발전비중이 유연탄의 비중을 크게 초과
 - 시나리오 5-2: 2020년 유연탄 발전비중 23.1%에 그치는 반면 LNG 비중은 기준안 대비 20.3%p 높은 34.7%로 증가.
- □ 개정된 세율 하에서는 변화 거의 없음.

< 주요 시나리오 유연탄과 LNG 발전 비중 변화(%) >

HI IZIO	세율(원/kg)	202	20년	202	25년	203	80년
시나리오	유연탄	LNG	유연탄	LNG	유연탄	LNG	유연탄	LNG
기준안(RS)	36	60	43.6	14.4	42.2	11.6	40.3	14.7
시나리오 3-2(\$3-2)	107	60	37.0	20.9	36.5	17.2	34.2	20.7
시나리오 5-2(\$5-2)	126	60	23.1	34.7	23.5	30.1	21.4	33.4
시나리오 3(\$3)	75	42	41.4	16.6	40.2	13.6	38.2	16.8
시나리오 4(S4)	108	42	32.4	25.5	32.5	21.2	30.8	24.0
시나리오 4-1(S4- 1)	90	35	40.2	17.8	38.7	15.0	37.1	17.9
시나리오 5-1(S5- 1)	118	35	22.9	34.9	23.3	30.3	21.2	33.6
시나리오 6(\$6)	83	81	41.8	16.2	40.5	13.3	38.5	16.5
2018년 세법개정(안)*	46	12	42.4	15.6	40.8	13.0	39.0	16.1

발전용 세제개편과 전기요금(분석결과)

주요 시나리오의 기준안 대비 전기요금 영향

< 기준안 대비 타 시나리오 전기요금 증감률 비교: 단기영향(%)>

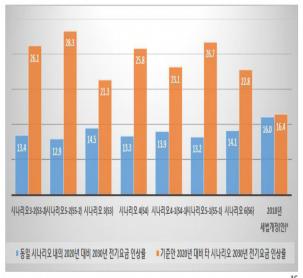
	2020년	2025년	2030년
시나리오	기준안 대비	기준안 대비	기준안 대비
시키리고	전기요금 증감률	전기요금	전기요금
	건기프리 이급별	증감률	증감률
기준안(RS)	-	-	-
시나리오3-2(\$3 - 2)	10.9	10.0	8.6
시나리오5-2(S5-2)	13.2	12.4	10.3
시나리오 3(S3)	5.8	5.4	4.5
시나리오 4(S4)	10.7	10.0	8.3
시나리오4-1(S4-1)	7.8	7.5	6.1
시나리오5-1(S5-1)	11.6	10.8	9.0
시나리오 6(S6)	7.4	7.1	5.8
2018년 세법개정(안)*	0.3	0.8	0.5
2018년			

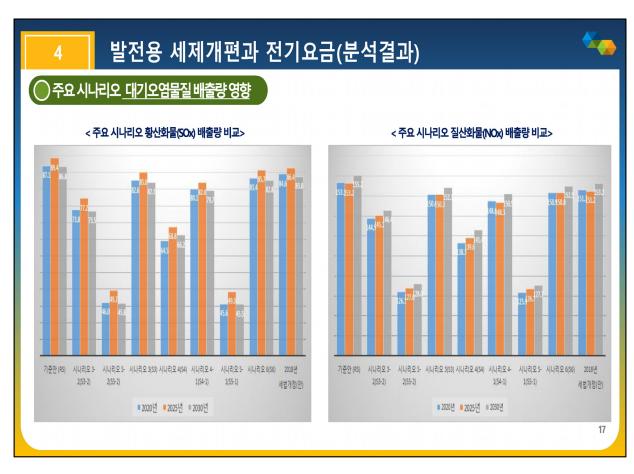
< 기준안 대비 전기요금 증감률(%)>

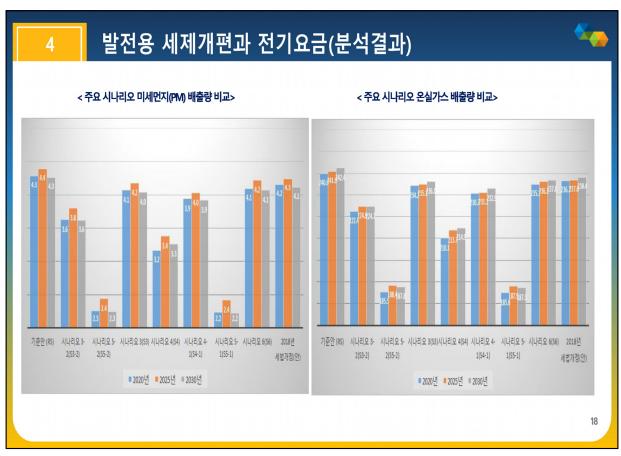
15

4

발전용 세제개편과 전기요금(분석결과)




주요 시나리오의 기준안 대비 전기요금 영향(계속)


< 주요 시나리오 장기 전기요금 영향 비교>

시나리오	동일 시나리오 내의 2020년 대비 2030년 전기요금 인상률	기준안 2020년 대비 2030년 전기요금 인상률
기준안(RS)	15.8	15.8
시나리오3-2(\$3-2)	13.4	26.1
시나리오5-2(\$5-2)	12.9	28.3
시나리오 3(\$3)	14.5	21.3
시나리오 4(S4)	13.3	25.8
시나리오4-1(\$4-1)	13.9	23.1
시나리오5-1(85-1)	13.2	26.7
시나리오 6(S 6)	14.1	22.8
2018년 세법개정(안)*	16.0	16.4

< 기준안 대비 장기 전기요금 영향(2020년 대비 2030년 인상률(%)>

정책 시사점

- □ 미세먼지 감축 등 환경개선을 위해서는 두 가지 방안을 고려할 수 있음
 - 오염물질 배출이 많은 연료의 사용을 규제하는 방법 : 물량규제
 - 오염물질 배출로 초래되는 비용을 가격에 반영하는 방법
- □ 물량규제 방법 : 석탄화력 발전 규제
 - 효과가 즉각적이고 가격 조정에 비하여 전기요금에 미치는 영향도 크지 않음
 - 다만 강제적인 조정이 바람직한지 여부와 좌초비용의 문제 가능성에 대한 고민 필요
 - 물량규제시에도 어떻게 하는 것이 보다 효율적인지에 대한 검토 요구됨

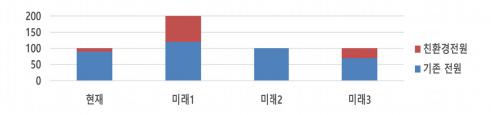
19

5

정책 시사점

- □ 발전용 유연탄과 LNG 제세부담금 조정('19.4.1)
 - 유연탄에 높은 세율 부과한 점은 개선. 외부비용의 일부(유연탄 46원/kg, LNG 12원/kg)만 반영 <발전용 에너지원별 미세먼지 관련 환경비용 산정결과(원/kg)>

발전원				미세먼지 관련 환경비용
달신권	황산화물 비용	질소산화물 비용	초미세먼지 비용	미세인지 선인 환경비용
유연탄	40.3	42.5	2.0	84.8
LNG	3.3	35.9	3.4	42.6


자료: 기획재정부 2018년 세법개정안 문답 자료, 2018. 7.30

- 유연탄 고열량탄에 높은 세율 부과 유지 : 세제 조정 목적과의 일관성에 문제
- 유연탄에서 LNG로 발전 전환을 위해서는 유연탄에 대한 개별소비세 100원/kg 이상으로 인상 필요. 다만 전기요금은 인상 불가피
- 전기요금 인상에 대한 국민 수용성의 문제 : 왜곡된 비용구조의 개선
- 전기요금 인상에도 불구하고 증가된 세수를 어떻게 활용하는가에 따라 성장, 고용, 분배 등에서 긍정적 효과

정책 시사점

- □ 환경개선을 위해서는 공급측면의 구성 변화만 중요한 것이 아니고 에너지 소비 감축도 중요
 - 낮은 전력 가격의 유지는 소비 증가를 유발하고 친환경 에너지 비중 확대 의미 퇴색

- 전기요금 인상에 대한 수용성이 낮은 이유를 정확히 파악할 필요 : 요금수준에 대한 불만인지 아니면 잘못된 또는 제한된 정보의 문제인지
- 에너지와 환경을 포함한 비용을 고려한다면 낮은 전기요금이 가계의 비용부담을 완화시킨다고만 볼 수 없음. 환경 악화로 인한 다양한 비용을 유발(마스크, 공기청정기, 의료비 특히 저소득가구)

21

5

정책 시사점

- □ 일관성 없는 정책은 국민에게 잘못된 정보를 제공하여 비효율적인 구조를 초래
- 일관성 있는 정책의 유지와 정책 간의 일관성 측면에서 정부의 에너지 가격 정책은 변화가 필요
- 전기요금 인상 없다는 정부의 반복된 발표는 국민에게 잘못된 인식을 심어주어 실제로 요금 개편이 필요한 경우에도 하지 못하는 결과를 초래할 수 있어 우려됨
- 전기요금은 독립된 규제기구가 담당하는 구조로 전환 필요
- □ 정부의 역할에 대한 고민 필요한 시점
- 향후 친환경적 에너지소비 구조로의 전환을 위해서는 에너지 공급 비용의 문제점을 개선하는 것이 중요.
- 다만 급격한 가격변화는 부작용 초래 가능성이 높으므로 단계적으로 조정하고 장기 로드맵 제시 필요
- 에너지가격과 관련된 정보의 공개 필요 : 왜곡된 정보는 잘못된 의사결정을 초래할 수 있음
- 정부가 아무리 정교하고 정확한 정책을 시행한다고 해도 시장기능보다 효율적일 수 없음. 정보를 투명하게 공개하고 경제주체의 합리적 의사결정을 유도하는 것이 현명한 선택임

	감사합니다!
Ž	
X	에너지경제연구원 Korea Energy Etonomics Institute